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Abstract

In this work we present a system to apply realistic lighting effects to 2D character
illustrations. Our approach involves a cascaded set of predictions: first generating
a normal map of the character’s 3D structure, utilizing it (and a light source) to
predict a global shadow map, and combining both to render the final effect. This
allows our system to paint natural overlapping shadows, and recreate complex
lighting effects, such as rim-lighting, while maintaining the ease of use associated
with CGI. Results on original illustrations show the effectiveness of our method.

1 Introduction
Under the pressure of external constraints, artists are often forced to compromise on the degree to
which they can realize their artistic vision. This is especially true of animators, where limited time
and budget often results in fewer frames, and less detail or movement. To what extent can machine
learning counteract these concessions? Such recent work has sought to streamline the time-consuming
task of coloring illustrations [12]. In this work we turn to yet another of these problems: the automatic
shading of 2D characters under complex and possibly dynamic lighting conditions.

The predominant paradigm in this line of research is to first reconstruct a 3D/2.5D model from 2D
images, and then apply rendering engines to produce the shading result. However, these approaches
often rely on additional information, either requiring a human annotator to provide hints of the
intended 3D structure [3, 8, 11, 1], or multiple views of the 2D character [5]. Recent CNN-based
approaches have estimated normal maps directly [10, 2]. However, such approaches do not model the
rich interaction of shadows in dynamic lighting environments.

In this work we introduce a method to automatically generate rich illumination effects for 2D
characters. We make a distinction between shadows which occur on the surface of a character
(local illumination) and shadows which result from the primary light source (global illumination).
This results in realistic shadows which are easily controllable and can be applied to illustrations or
animations with minimal effort on the part of the artist.

2 Methodology
Here we briefly describe an overview of our system:

Figure 1: Architecture Overview
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Figure 2: Results on an original illustration. Red circles highlight important differences. Result (f)
uses only the normal information in (b), while our result (g) uses the global shadow information (c)

Normal Map Estimation First, a GAN architecture (here, a residual Unet [4]) is trained to predict
normal maps, providing a partial reconstruction of the 3D structure implied by the 2D illustration. A
3D model is used to produce an unshaded 2D illustration and the ground truth normal maps. During
training we minimize the L1 loss between map outputs and ground truths with the adversarial loss
from SNGAN [7] and the perceptual loss from Illustration2Vec [9].

Shadow Map Estimation Second, the illustration, normal map, and light source angle are used
as input to a second residual Unet which predicts the global shading information, encoding it in the
shadow map. Here the rich features of the normal map provide important structural cues, improving
result quality and accelerating convergence. To make the shadow map generator better adapt to the
input light direction, we proposed a novel light direction loss, and utilize it together with L1 loss and
perceptual loss during the training process.

3 Experiments

Data We construct a training dataset consisting of 240K examples, each consisting of an image,
normal map, shadow map, and light direction. Each example starts out as a freely-available 3D model,
and we utilize the Unity© game engine for rendering the various 2D representations that serve as the
inputs and ground truths during training.

Discussion Results of our method are shown in Fig. 2. Here we compare the result of using
additional shadow map information (g) to that of using only the normal map (f), and show the
tendency of the baseline system to underspecify shading. For example, while both characters show
shadows that result from top-down illumination, our result accurately shades regions where the
character’s structure would obstruct this lighting, such as in the waist, hair, and legs. This is not
objectively better, as there could exist a lighting situation for which (f) is correct, but we argue it is
more representative of realistic lighting scenarios.

Lighting can also be adjusted continuously with little additional effort (Fig. 3).

Figure 3: Shading results with continuously changing light direction.

Thus our method helps bring CGI convenience to 2D illustration, opening up opportunities for
improved workflows in art studios. Future directions include support for multiple light sources,
control over diffusion, and shadow projection. As an interactive design tool, by reducing shading to a
single parameter, we hope to further assist artists in making stylistic lighting decisions.
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Supplementary Materials

A Dataset Construction

Our training dataset consists of color images, and their corresponding normal maps, shadow maps
and light directions, created by rendering freely-available 3D anime characters. We collected these
from 3D model sharing sites, such as Niconi Solid2. Fig. 4 shows some examples of our training
data. We collected 219 3D anime character figures in total. When creating the dataset, we rotate
character models around the y-axis and apply 3 types of basic character motions (relaxing, walking
and running) randomly. To compute gold shadow maps, we choose an arbitrary lighting direction,
constrained to be pointing towards the center of the character, and thus this direction is specified as
the angle between the light source and the center of the character. Here, we use lα ∈ [0, 180] and
lβ ∈ [0, 359] to indicate the vertical angle and the horizontal angle respectively, as shown in Fig. A
(a).

Figure 4: Examples for our dataset. (Source 3D model © Kizuna AI, © Mirai Akari Project. All
rights reserved.)

B Model Details

B.1 Network Architecture

Figure 5: Overview architecture.

Our proposed networks are represented in Fig. 5, the normal map generator is on the left (depicted in
green) and the shadow map generator is on the right (depicted in red), which inspired by the network
proposed in [4] for extracting structural lines of pattern-rich manga. Each block of generators in
Fig. 5 consists of several residual blocks, and channel-wise addition is used as the skip connections
between the encoder and the decoder. Features extracted by the normal map generator are full of
detailed local geometric information, so we also input those features to the shadow map generator,
together with the input images and light directions. Using those features helps the shadow map
generator get detailed structure information, and we observe faster convergence during training when
using this technique.

2https://3d.nicovideo.jp/
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B.2 Loss Function

Besides the L1 loss, we also use a conditional-GAN [6] loss and a perceptual loss to get high-quality
results. We also add spectral normalization [7] to the discriminator for stable training. The perceptual
loss is calculated as the distance of the extracted features of generated normal maps and ground truths,
and we use a pretrained Illustration2Vec network [9] as the extractor. With ỹN := GN (x) indicates
the generated normal maps, the loss function for normal map generator is described as following:

LN = L1 + λ1Ladv + λ2Lper (1)
L1 = ‖ỹN − yN‖1 (2)
Ladv = −Ex∼p(x)[log(ỹN )] (3)

Lper =

n∑
i=1

1

Mi
[‖I(i)(ỹN )− I(i)(yN )‖1] (4)

where yN is the ground truth normal map with respect to the input color image x, and I(i) denotes
the i-th layer with Mi elements of the Illustration2Vec network.

Furthermore, we propose to use a pretrained classification network, indicated as the light direction
predictor. Besides loss functions used in training normal map generator, we also make shadow map
generator minimize the L2 distance between the predicted light direction of generated shadow maps
and ground truths. With F (GN (x)) and ỹS := GS [x, F (GN (x))] indicate the extracted features
from GN and the generated shadow maps, the loss function for shadow map generator then becomes:

LS = L1 + λ1Lper + λ2Llight (5)
L1 = ‖ỹS − yS‖1 (6)

Lper =

n∑
i=1

1

Mi
[‖I(i)(ỹS)− I(i)(yS)‖1] (7)

Llight =
1

181
‖Lα(ỹS)− lα‖2 +

1

360
‖(Lβ(ỹS) + 180− lβ)%360− 180‖2 (8)

where yS is the ground truth shadow map with respect to the input color image x and input labels of
light direction (lα ∈ [0, 180], lβ ∈ [0, 359]). Lα and Lβ are predicted light direction and % indicates
the remainder operator. The horizontal angle of light direction starts from 0 and ends at 359, but 0
comes after 359. To prevent discontinuous light loss from this gap, we propose to use a mapping of
the angle as shown in the second item of equation (8) .

B.3 Training Details

Line-drawing Augmentation Because artists have a high-level freedom when creating hand-drawn
illustrations, real-world drawings may vary significantly from synthetic images in stylistic aspects.
Thus it is important to hinder the model from over-fitting to superficial characteristics of the synthetic
data generator, and to better generalize to the stylistic diversity of real-world illustrations. Specifically,
line-drawings significantly influence normal map generator, which could result in unnecessarily
complicated output. Therefore, we add a line-drawing-based data augmentation technique which
randomly adjusts the color and thickness of line art input images, as shown in Fig. 6. We extract
line-drawings from the original by the technique introduced in [12]. Effects of the line-drawing data
augmentation are shown in Fig. 7.

Continuity of Input Light Direction There are 360 degrees of possible light directions along a
single axis, but because of the cyclic nature of this rotation, the integer difference between 0 and
359 is large, while conceptually these correspond to successive angles. In order to create an input
value that behaves continuously between the endpoints of the input interval, we divide the horizontal
angle parameter lβ ∈ [0, 359] to lβ1 ∈ [0, 180] and lβ2 ∈ [0, 180] to indicate the angle from back to
front, and the angle from right to left, respectively. We then use these two parameters together as
the horizontal light direction input to the shadow map generator. When the horizontal angle is 0,
the input to the generator is (0, 90). When it is 359, the input becomes (1, 89), which preserves the
continuity of the input.
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Figure 6: An example of line-drawing data augmentation. The 1st image on the left is the original,
and the others are augmented images. (Source 3D model ©query-chan. All rights reserved.)

Figure 7: Comparison of inferred normal maps w/ or w/o line-drawing augmentation.

C Additional Results

Real-world artwork varies significantly from our synthetically generated training examples. Fig.
8 and Fig. 9 show our shading results with various light direction and art styles. Although the
characters’ cloths and poses are quite different from our synthetic data, our proposed method can
generate plausible results.

Figure 8: Shading results on original illustrations with various light direction.
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Figure 9: Additional comparison on real-world illustrations. For each sample, we show the results
without using the shadow map in the 1st row, and the results with the shadow map in the 2nd row. Red
ovals highlight the difference. (Source drawings © SSS LLC., © 2018 Pronama LLC., © Crypton
Future Media, INC. www.piapro.net. All rights reserved.)
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Rim Lighting Effect

Rim lighting effect is a popular technique in photography and in 3D rendering, and is the effect where
the character is backlit, highlighting only the edge contours of the character. We can add a natural
rim lighting effect to 2D characters as an application of our proposed method as shown in Fig. 10. In
the real world, rim lighting effect is caused by subsurface scattering from the back side of the object.
Although we do not have information about the back side of the 2D character, we can assume that
the boundary of the back side is similar to the boundary of the front side. From this assumption, we
invert the horizontal angle parameter and get the boundary of the shading result of the inverted light
direction (Fig. 10 c), and blend it with one of the input light directions (Fig. 10 b) to calculate the rim
lighting effect (Fig. 10 d). Here, we get the boundary of the character from the input image's alpha
channel, and the final shading results with rim lighting effect are shown in Fig. 10 f.

Figure 10: Rim lighting results using inferred shadow maps. (a) inputs, (b) shading results of
input light direction, (c) shading results of inverted light direction, (d) rim lighting effect, (e) toon
shading results, (f) toon shading results w/ rim lighting effect. Yellow arrows point out some major
differences.
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