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Abstract

We aim to achieve generative creativity by learning to combine spatial features
of images from different domains. We focus on shape-oriented bionic design
as an ideal case study: a target object (e.g. a floor lamp) is designed to contain
shape features of biological source objects (e.g. flowers), resulting in creative
biologically-inspired design. We propose DesignGAN, a conditional GAN based
architecture with several designated losses for this task. We demonstrate that our
proposed method can successfully generate creative images of bionic design.

1 Introduction

In computer vision, achieving generative creativity (i.e. the generation of new and creative images
via feature combination) is a long-term goal. For example, in image style transfer [3, 9, 4], creative
images can be generated by composing the features of existing content images and style images in a
novel manner. In this work, we aim to achieve generative creativity by learning to combine spatial
features of images from different domains. Bionic design [8, 17], in which a biologically-inspired
object is created by combining the features of a target design object with those of biological source
objects, offers an ideal context for our study. We focus on shape-oriented bionic design: given an
input image of the design target, our objective is to generate biologically-inspired images that 1)
maintain the shape features of the input image, 2) contain the shape features of images from the
biological source domain, 3) remain plausible and diverse. Essentially, shape-oriented bionic design
exhibits generative creativity, because it can be seen as composing the spatial features of design target
images and biological source images into creative images that never existed before.

The challenges are threefold. First, the task is of unsupervised learning, since the nature of creative
design implies that there is no or very few available images of biologically-inspired design. In our
case, we only have unpaired data of design target images and biological source images. Second, there
should be multiple ways of integrating features of biological source images into the given design
target image. In other words, bionic design is a one-to-many generation process, and the learned
generative model should be able to achieve this variation. Third, the generated biologically-inspired
design should preserve key features of input design target image and biological source images, which
requires the model to be able to select and combine the salient features of different sources.

2 Model

Following the assumption and problem formulation (detailed in Appendix A), we propose DesignGAN
(Figure 1), a conditional generative adversarial networks (cGAN) [5, 14] based framework for bionic
design, with various enhancements designed to resolve the aforementioned challenges. First, the
generator takes as input both an image and a latent variable sampled from a prior distribution, which
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enables the generation of diverse images. This is implemented by the introduction of an encoder and
a latent loss. Second, our approach employs both a cycle loss [19, 11, 18] and a regression loss to
help maintain the salient features of the design target. Last, an adversarial loss is used to integrate the
salient features of biological source images into the input design target image. More details can be
found in Appendix B.
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Figure 1: Schema of our proposed DesignGAN model. It is composed of two generators (GDB and
GBD), two discriminators (DB and DD) and one encoder (E). Loss components include latent loss
(LDB

l and LBD
l ), cycle loss (LDB

c and LBD
c ), regression loss (LDB

r and LBD
r ) and adversarial loss

(LDB
a and LBD

a ). At inference stage, GDB is used to generate varied biologically-inspired images
îDB , given an input design target image d and an input noise vector z.

3 Results

Figure 2 illustrates the generated shape-oriented bionic design by our proposed DesignGAN (more
experimental details can be found in Appendix C). We maintained the same value of the latent
variable for the corresponding three generated images for each group of generation. DesignGAN is
capable of generating creative and diverse biologically-inspired images that contain the combined
spatial representations of both input design target image and biological source images.
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Figure 2: Qualitative results of our proposed DesignGAN for shape-oriented bionic design. (a) Hat
+ rabbit. (b) Floor Lamp + flower. (c) Vase + pineapple. (d) Suitcase + onion. (e) Wine glass +
flower. (f) Hat + octopus. (g) Wine bottle + pear. (h) Teapot + whale.

Figure 3 shows the generated biologically-inspired design images by linearly interpolating the input
latent variable z. The smooth semantic transitions verify that our model learns useful representations
for the bionic design problem, rather than a simple memorisation of the training samples [15].
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Figure 3: Results of interpolating input latent variable. (a) Suitcase + onion. (b) Floor lamp + flower.
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Appendix

A Assumption and Problem Formulation

The problem of bionic design can be formulated as follows. Given a design target domain D contain-
ing samples {dk}Mk=1 ∈ D (e.g. floor lamps) and a biological source domain B containing samples
{bk}Nk=1 ∈ B (e.g. flowers), we have the corresponding latent spaces of D and B (respectively Zd

and Zb) that contain the representations of each domain. We denote the data distribution of D and B
as p(d) and p(b). We then make two key assumptions of the bionic design problem: 1) there exists an
“intermediate” domain I containing the generated objects of biologically-inspired design {îk}Ok=1 ∈ I ,
and 2) the corresponding latent space of I (denoted as Z) contains the merged representations of
those from Zd and Zb, as illustrated in Figure 4.

Based on these two assumptions, the objective of bionic design is to learn a generating function
GDB : D × Z → I , such that the generative distribution matches the distribution of I (denoted as
p(i)). Since in our case we do not have any existing samples from I , it is impossible to explicitly learn
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Figure 4: Our assumption of the bionic design problem.

such generative distribution. Nonetheless, we could still learn it in an implicit fashion via real data
distributions p(d) and p(b), and the careful design of the model architecture. This is where generative
creativity comes from. Also note that GDB takes as input the latent variable z ∈ Z sampled from
the distribution p(z), the requirement of variations for bionic design is satisfied directly: multiple
samples based on a single d can then be generated by sampling different z from p(z).

B Methods

Each loss component of DesignGAN is detailed as follows.

Adversarial loss. We employ two sources of adversarial loss LDB
a (GDB , DB) and LBD

a (GBD, DD)
that respectively enforce the outputs of GDB and GBD to match the empirical data distribution p(b)
and p(d), as an approach to integrate corresponding features to the generated images.

La(GDB , GBD, DB , DD) = LDB
a (GDB , DB) + LBD

a (GBD, DD),

LDB
a (GDB , DB) = Eb∼p(b)[logDB(b)] + Ed∼p(d),z∼p(z)[log(1−DB(GDB(d, z)))],

LBD
a (GBD, DD) = Ed∼p(d)[logDD(d)] + Eb∼p(b),z∼p(z)[log(1−DD(GBD(b, z)))],

(1)

where DB and DD are discriminators that distinguish between generated and real images from B
and D.

Cycle loss. The problem of bionic design requires the generated images to maintain the features of
the input design target. In other words, the generated image should still be recognised as in the class
of the design target. For the shape-oriented bionic design problem, it simply implies that the generated
images should resemble the input images to a large extent. After all, it would be unreasonable to
generate biologically-inspired images that in turn share no relationship to the input design target
image. We apply cycle loss LDB

c and LBD
c to constrict the generators GDB and GBD to retain the

shape representations of the input images:

Lc(GDB , GBD) = LDB
c (GDB , GBD) + LBD

c (GBD, GDB),

LDB
c (GDB , GBD) = Ed∼p(d),z∼p(z)[‖GBD(GDB(d, z), E(GDB(d, z), d))− d‖22],

LBD
c (GBD, GDB) = Eb∼p(b),z∼p(z)[‖GDB(GBD(b, z), E(b,GBD(b, z)))− b‖22],

(2)

where we employ L2 norm in the loss. The inclusion of cycle loss makes our model optimised
in a dual-learning fashion [19, 11, 18]: we introduce an auxiliary generator GBD and train all the
generators and discriminators jointly. After training, only GDB will be used for bionic design
purpose.

Regression loss. The cycle loss enforces the generated images to maintain the shape features of the
input image only. Another way of maintaining the design target features is to simultaneously force
the generated images to contain key features of the design target domain, which directly makes the
generated images recognised as the class of the design target. We therefore introduce the regression
loss LDB

r and LBD
r imposed by the discriminatorDD andDB . LDB

r and LBD
r respectively constricts

GDB and GBD to maintain representations from the domain of input images. Note that in such
a situation DD and DB are employed as a regression function only, without competing with the

4



generators as the adversarial loss does. This is why in Figure 1 there is only one input to DD and DB

when referring to Lr.

Lr(GDB , GBD) = LDB
r (GDB) + LBD

r (GBD),

LDB
r (GDB) = Ed∼p(d),z∼p(z)[log(1−DD(GDB(d, z)))],

LBD
r (GBD) = Eb∼p(b),z∼p(z)[log(1−DB(GBD(b, z)))].

(3)

Latent loss. We employ a unified encoder E and a latent loss to model the variation of the bionic
design problem:

Ll(GDB , GBD, E) = LDB
l (GDB , E) + LBD

l (GBD, E),

LDB
l (GDB , E) = Ed∼p(d),z∼p(z)[‖E(GDB(d, z), d)− z‖1],

LBD
l (GBD, E) = Eb∼p(b),z∼p(z)[‖E(b,GBD(b, z))− z‖1].

(4)

The encoder E of DesignGAN encodes a pair of images from each domain (either (̂iDB , d) or
(b, îBD)) into the latent space Z of domain I , which corresponds to our assumption of the bionic
design problem (Appendix A). The latent loss is computed by the L1 norm distance between the
generated latent variable ẑ and the input noise vector z, which forces the model to generate diverse
output images.

Full objective. The full objective function of our model is:

min
{GDB ,GBD,E}

max
{DB ,DD}

L(GDB , GBD, E,DB , DD) = λaLa(GDB , GBD, DB , DD)

+λcLc(GDB , GBD) + λrLr(GDB , GBD) + λlLl(GDB , GBD, E),
(5)

where we employ λa, λc, λr and λl to control the strength of individual loss components.

C Experimental Details

Dataset. We evaluated our models on "Quick, Draw!" dataset [6] that contains millions of simple
grayscale drawings of size 28×28 across 345 common objects. It is an ideal dataset for the shape-
oriented bionic design problem due to its contained images of great variation and complexity. We
selected eight pairs of domains of design targets and biological sources as the varied bionic design
problems, including hat + rabbit, floor Lamp + flower, vase + pineapple, suitcase + onion, wine
glass + flower, hat + octopus, wine bottle + pear, teapot + whale. We randomly chose 4000 images
from each domain of the domain pairs for training.

Network architecture. For the generator networks, we adopted the encoder-decoder architecture.
The encoder contained three convolutional layers and the decoder had two transposed convolutional
layers. Six residual units [7] were applied after the encoder. The latent vector was spatially replicated
and concatenated to the input image. The discriminator networks contained four convolutional layers.
For the encoder network, the two input images were concatenated and encoded by three convolutions
and six residual units. We employed ReLU activation in the generators and encoder, and leaky-ReLU
activation in the discriminators. Batch normalisation [10] was implemented in all networks.

Training details. The networks were trained for 120 epochs using Adam optimiser [12] with a
learning rate of 0.0001 and a batch size of 64. The learning rate was decayed to zero linearly over the
last half number of epochs. Due to the distinct complexity of images from different domains, the
values of λa, λc, λr and λl and dimension of latent variable z were set independently for each of the
domain pairs. We used the objective functions of Least Squares GAN [13] to stabilise the learning
process. The discriminator was updated using a history of generated images, as proposed in [16],
in order to alleviate the model oscillation problem [19]. We appled random horizontal flipping and
random ±15 degree rotation to the training images, which were further resized to 32×32 before
being fed into the models. The implementation was in TensorFlow [1] and TensorLayer [2].
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