
Improvised Robotic Design with Found Objects

Azumi Maekawa1∗,Ayaka Kume2,Hironori Yoshida2, Jun Hatori2,
Jason Naradowsky2,Shunta Saito2

1University of Tokyo
2Preferred Networks, Inc.

{kume, hyoshida, hatori, narad, shunta}@preferred.jp

Abstract

We present a study in the creative design of robots using found objects. In particular,
this study focuses on learning locomotion techniques for robots with nontraditional
and arbitrary shaped limbs, in this case, tree branches. Through a use of 3D
scanning, simulation, and deep reinforcement learning, we show that we can
effectively learn movement strategies for such robots with unorthodox shapes.

1 Introduction

Under the banner of “found object” or “readymade”, artists can give new meaning to ordinary objects.
Duchamp famously placed a bicycle fork and wheel upside-down on a wooden stool, where he could
appreciate it purely for its aesthetic value. Goldsworthy assigns new meaning to natural materials,
such as stones and leaves, through their purposeful and aesthetic arrangement. Though these materials
are mundane, the intent gives them artistic meaning.

In this paper, we consider the use of found objects in robotics. Here, these are branches of various
shapes. Such objects have been used in art or architecture but not normally considered as robotic
materials [5, 3]. When the robot is trained towards the goal of efficient locomotion, these parts adopt
new meaning: hopping legs, dragging arms, spinning hips, or yet unnamed creative mechanisms of
propulsion. Importantly, these learned strategies, and thus the meanings we might assign to such
found object parts, are a product of optimization and not known prior to learning.

We propose 1) a new concept for robot design using found objects (Fig. 1), 2) a method of locomotion
search using deep RL for robots consisting of irregularly-shaped found objects, and 3) an experimental
case study constructing a real robot from tree branches. This opens up the door for more creative
robot design, where combinations of household items or natural objects can be coordinated to perform
simple tasks.

Figure 1: (1) artists pick up branches, (2) scanning and design a configuration of a robot, (3) acquire
effective locomotion policy in a simulator, (4) transfer to the real robot.

∗Work performed while the author was doing an internship at Preferred Networks

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



Figure 2: Four major invalid states observed in simulation.

2 Our robot

We collected various Y or I shaped branches to serve as the robot body, and connected these to
servo motors to complete the robot. Having designed our robot, we turn to the problem of assigning
function to form. We scanned each branch with a 3D scanner, and simplified the scanned geometries
for more efficient simulation. Weights were measured, and the values of the moment of inertia values
were geometrically calculated. By scanning such objects and incorporating them into a digital robot
model, we can perform learning in a simulated environment.

3 Learning

Effective Locomotion In the simulator, we allow the model to explore various movements and,
via reinforcement learning, learn to apply them towards the goal of effective locomotion. We use
the DDPG (Deep Deterministic Policy Gradient) [4], which is a model-free algorithm that can be
used with continuous multi-dimensional action spaces, like in servo control. DDPG has been used
in prior works with real robots [2]. Here learning in the simulator is advantageous, as it allows
for multi-agents learning, and a large number of associated failure attempts, without destroying the
physical robot.

Reward Shaping We can control the learned policy indirectly by specifying different reward
functions. For example, an agent gets greater reward when it gets far from the initial position, so that
the agent will learn an efficient gait to go far after training. We can also steer the model away from
unfavorable policies (Fig. 2) by giving low rewards for specific behaviors, such as spinning at the
same position, or other motions that might cause stress and wear in the real robot.We discuss this
further in the Supplementary Materials as these conditions are closely related to the hardware setup
of the real robot.

Transferring from simulation to reality To apply the learned motion to the real robot, we simply
copy the joint values from the simulator policy to the servo motors on the real robot. While fine-tuning
the policy in the real world environment is one option, we manually select policies which satisfy
both high expected returns and high feasibility in the real world environment (as judged by human
observation of the simulation). In the end, we collected 30 different policies and curated them based
on effectiveness and aesthetic value. We present one in supplementary video2, chosen for its unique
locomotion using a Y-shaped branch.

4 Lessons Learned

In this paper, we proposed a new concept of creating a robot using irregularly-shaped found objects.
It also revealed several remaining challenges, such as the need to further overcome the gaps between
simulator and the real world. But in many ways we were successful, and achieved the goal of creating
real-world robots that can utilize their unorthodox bodies in unorthodox ways. While none of the
learned behaviors are refined enough to be considered walking, their crawling behaviors often mimic
those found in animals, and in doing so we assign new meaning and purpose to commonplace objects.

2https://drive.google.com/open?id=1TYpNKAicftVz3gLZPk8i3X1bhJSN3WYI

2

https://drive.google.com/open?id=1TYpNKAicftVz3gLZPk8i3X1bhJSN3WYI


References
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech

Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[2] Sehoon Ha, Joohyung Kim, and Katsu Yamane. Automated deep reinforcement learning environment for
hardware of a modular legged robot. In 15th International Conference on Ubiquitous Robots, UR 2018,
Honolulu, HI, USA, June 26-30, 2018, pages 348–354, 2018.

[3] Takeo Igarashi Hironori Yoshida, Maria Larsson. Upcycling tree branches as architectural elements through
crowdsourced design and fabrication, 2019.

[4] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[5] Jessica Mairs. AA design and make students use a robotic arm to build a woodland barn. http://pr2016.
aaschool.ac.uk/2014-15--Woodchip-Barn, 2016. Accessed: 2018-07-30.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[7] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033.
IEEE, 2012.

3

http://pr2016.aaschool.ac.uk/2014-15--Woodchip-Barn
http://pr2016.aaschool.ac.uk/2014-15--Woodchip-Barn


Figure 3: A robot constructed as a case study. Left: The branch robot is controlled by Arduino Mega
2560 and a motor driver with a separate power supply. The size and weights of the three branches
(left, middle, and right) are 339, 383, 271 (mm), and 56, 120, 38 (g) respectively. Right: A close-up
of the connector. Kondo KRS-2572HV servo motor is connected with branches.

Supplementary Materials

A Case Study

The goal of this case study is to verify the feasibility of the proposed work-flow which is starting
from designing the robot, learning gait in a simulator, and verification of the gait with a real robot.

A.1 Hardware setup

We choose tree branches as hardware material of the robot. Tree branches have varying shapes, and
their rigid and lightweight properties are suitable for a physics-based simulation. Most importantly,
tree branches are found everywhere thus they deserve to be called found objects.

We collected twenty branches and used six of them for this case study. The composition of the
branches is manually defined (see Figure 1.4). We designed two types of robots each of which
consists of three branches: one has three motors, while the other has four (see the left picture in
Figure 3). The branches and servo motors are connected by connectors printed by 3D printer (see
the right picture in Figure 3). We scanned each branch with Artec EVA hand-held 3D scanner, and
then simplified the scanned geometries for light-weight simulation. Weights were measured, and the
values of the moment of inertia values were geometrically calculated.

A.2 Simulation setup

We used MuJoCo [7] which is a standard simulator used in OpenAI gym [1]. The simulation ran on
a Linux server which has a Intel Xeon E5-2623 v3 CPU and a NVIDIA GeForce GTX TITAN X
(Maxwell). We empirically chose 0.5 for the friction coefficient of the floor on the simulation, and
ran the simulation at 10 Hz to synchronize it with the real robot. Figure 4 describes the task setup for
the simulation.

A.3 Reward functions

To obtain feasible gaits for the real robot, the reward function was needed to be carefully designed
because some learned gaits which work in the simulation did not work with the real robot. For
example, we found that joint values tended to be either minimum or maximum values (±135◦)
at each time step during training, resulting in wiggling motion. The wiggling motion is not only
inefficient, but also infeasible with a real robot. Another simulation-specific gait was drifting (or
sliding). We avoided this by giving a negative reward when the difference between succeeding actions
is small. Flipping motion and balancing action are also problematic. Flipping causes the entanglement
of wires in the real world. We avoid balancing case as it is sensitive with small difference between
simulation and the real world. As flipping and balancing were not frequently observed, we manually

4



Figure 4: Simulation setup for RL. The robot receives high reward as it moves straight to the defined
direction (a), otherwise, low reward due to out of the path (b).

filtered these out by checking the rendered frames. Figure 2 summarizes these problematic gaits.
Please refer to the supplementary video material for these gaits.

A.4 Training of the agent

Each agent took few hours to finish learning, which is approximately a few hundred thousand time
steps in simulator. The neural network used for both actor and critic in DDPG had two hidden fully
connected layers with 100 hidden units. During the learning, we prepared 30 agents with varying
reward functions for a diverse set of gaits, as well as to avoid the above mentioned invalid gaits.
Further, other DRL methods, such as Deep Q-Learning [6], were tested in this step.

A.5 Application of the learned policy to the real robot

We sorted agents based on scores, and then selected three agents by manually checking rendered
frames. Some invalid gaits, such as flipping and balancing, were filtered out in this step.

One of agents acquired a propelling motion with Y shaped branches (see Figure 1.3 and 4), which
was an unexpected gait for the authors. This motion was recorded in the simulator, and then its
joint values were exported for application to the real robot. As a result, we observed that the robot
successfully moved forward as in the simulator without flipping and wiggling, nor did it remain
stacked in the same spot. Please refer to the video material for the motion of the actual robot.

A.6 Remaining Challenges

Although we managed to complete the work-flow, this case study revealed several challenges. First of
all, it took several iterations, going back-and-forth, of the work-flow to minimize the gap between the
simulator and the actual robot. For example, we had to update the friction coefficient of the floor and
the scale of rewards several times. Similarly, the mesh size of the object is supposed to influence the
the simulation result, particularly in contact calculation; however, we did not iterate trial-and-error on
this parameter. There could be other parameters we did not pay attention to in this case study.

Ideally, the above points could be solved by running the learning with the real robot; however, there
are several challenges described as follows. In fact, we tried to prepare the DRL setup with the real
world; however, it did not obtain sufficient results. The main reason for this was that the duration
of the learning process would be very long. Observation of the pose was also an issue due to the
relatively small size of the branches. If the size were larger, it would be possible to put cameras on
the robot itself, which would reduce the gap between the simulation and real-world setup.

A larger size is also suitable for making the robot stand-alone without the external motor controller
and power sources, which mitigates the flipping constraint. During the case study, we observed an
entanglement of the cable several times, even with the gait moving straight, without spinning or
rotating.

5


	Introduction
	Our robot
	Learning
	Lessons Learned
	Case Study
	Hardware setup
	Simulation setup
	Reward functions
	Training of the agent
	Application of the learned policy to the real robot
	Remaining Challenges


