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Abstract

Existing systems for music generation have generated music in a left-to-right
direction or have used a fill-in-the-blank approach on a quantized piano-roll musical
representation. In this work, we show that it is possible to train a self-attention
based Transformer to infill deleted sections of MIDI transcriptions of performed
piano music. This infilling technique can be used collaboratively by composers to
select contiguous sections of their work to be ‘rewritten’ by a neural net. It can
also be used to gradually morph one musical piece into a different one.

1 Introduction

Generative models for music usually focus on predicting the future from the past (Oore et al., 2018).
However, if both the future and past are known, prediction becomes much easier. CoCoNet tackles
this problem by training a neural network to make predictions for masked positions on a piano roll
(Huang et al., 2017). Inspired by CoCoNet, we extend the music infilling task to virtuosic piano
performances by taking advantage of the recently-introduced NoteTuple representation (Hawthorne
et al., 2018). We introduce a novel approach to collaborative music generation, where musicians
can select a contiguous section of their performance to be ‘rewritten’ by a neural network. We also
show how repeated iterations of Gibbs sampling can gradually transform a MIDI piano performance
into a new one with similar phrasal structure to the original. Audio samples can be found at
https://goo.gl/magenta/performance-infilling-examples.

2 Approach

Data Representation In CoCoNet’s infilling task, music is represented as a binary matrix with
the x-axis corresponding to quantized timesteps and the y-axis corresponding to pitches (Huang et al.,
2017). Multiple monophonic instruments are supported by adding a ‘depth’ dimension to the matrix.
This representation led to impressive infilling results on quantized sequences, such as excerpts from
Bach chorales, but it does not scale to longer, unquantized piano performances. In contrast, language
models for music have been trained on unquantized, polyphonic piano music by using a MIDI-like
Performance representation (Simon & Oore, 2017). Time shifts, note on/offs, and other events are
flattened into a single sequence of tokens, resulting in information on a note’s start time and duration
potentially spanning many positions in the encoded sequence. It is not possible to mask adjacent
music notes by masking contiguous sub-sequences of the encoded representation.

To solve the problems with existing representations, we turn to the NoteTuple representation intro-
duced by Hawthorne et al. (2018) where each note is encoded in a single six-element tuple. The
tuples are ordered temporally, and chords are ordered lowest pitch to highest pitch.

Model and Training To train a model that takes in a musical sequence with a random window of
notes missing, and then predicts the missing note sequence given the context sequence, we use the
Transformer introduced in Vaswani et al. (2017) and also Music Transformer with relative attention
from Huang et al. (2018). For each sequence of note tuples X = x1, ..., xn, we predict

pθ(xr+1,...,r+k|xr−c+1,...,r, xr+k+1,...,r+k+c)
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Figure 1: In the infilling task, a temporally contiguous set of notes (shown with red stars) is randomly
selected to be ‘rewritten’ by the neural net. Although in this visual the model predicts a replacement
with the same temporal length as the original, in our actual model, predictions can vary in duration.

where k is the size of the window to infill, and r ∼ Uniform[0, n− k]. The input sequence is formed
by concatenating the left context, a special separator token, then the right context. For windows on
the far left (r < c) or far right (r > n− c− k), the left context is left-padded and the right context
is right-padded, such that the separator token is always at the same position in the sequence. In the
default Tranformer implementation, position in the sequence is encoded by adding sine and cosine
functions of different frequencies to the input sequence embeddings. In our implementation, we
ensure that these remain continuous across the entire sequence. That is, the positional encoding for
the input sequence uses the indices [0, ..., c, c + k + 1, ..., 2c + k], and the encoding for the target
sequence uses the indices [c, ..., c+ k]. Experiments were conducted on two deletion window sizes:
k = 16 and k = 32, with either relative or absolute attention, and with a context window of c = 512
notes. All models were trained on the MAESTRO dataset using the Tensor2Tensor framework with
six hidden layers, hidden size 288, and filter size 2048 (Anonymous, 2018; Vaswani et al., 2018).

3 Results

Single Step Inference We conducted a listening test where participants were asked to listen to two
audio snippets and then rate which was more musically pleasing. The snippets contained 96 notes,
either entirely groundtruth or with the middle 32 coming from a model. For each k = 32 model
(relative attention and absolute attention), eight participants were asked to compare 12 pairs of music
snippets. The table below gives the raw counts of how many times each was rated more musical. The
relative attention model was rated to be equivalent to or better than the groundtruth 66% of the time.

# Preferred Model Groundtruth No preference Validation NLL
Rel Att 36 42 30 1.45
Abs Att 25 64 19 1.42

Multi Step Inference Using Gibbs sampling, it is also possible to convert a full MIDI performance
into a completely new one (Resnik & Hardisty, 2010). Given an input MIDI sequence, at every
iteration, a random window of notes is selected to be replaced by predictions from the trained model.
After several hundred iterations, nearly every note in the original sequence has been modified by the
network, leading to a music performance that has structural resemblances to the original performance,
but sounds quite different. The level of difference can be controlled through the number of iterations
of Gibbs sampling that are performed. Example sequences after 512 iterations can be found in the
supplemental.

4 Discussion

At k = 16, the model is very good at replicating the missing notes. As the window size is increased,
the model deviates more and more from the original notes. Some preliminary work has been done on
models trained with variable window size; more effort is necessary to work out a balance between
an ‘adventurous’ model able to generate new material, and a ‘safe’ one that excels at staying true to
the input. It would also be beneficial to train with extra conditioning signals, such as tempo and key
signature so that the stylistic direction of the composition can be more easily controlled by the user.
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5 Supplemental

Groundtruth
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Figure 2: A groundtruth music sequence and the results of running Gibbs Sampling for 512 iterations
using the relative-attention k = 32 model. Even after every note has been "rewritten" with high
probability, the generated sequences preserve the musical structure of the original, i.e. fast runs up
and down the scale, followed by a more melodic period, followed by another fast scalar period.

4


	Introduction
	Approach
	Results
	Discussion
	Supplemental

